Majority of microbes residing in the gut have a profound influence
on human physiology and nutrition and are crucial for human life [2–4]. Gut AR-13324 microbiota shapes the host immune responses [5]. The composition and activity of indigenous gut microbiota are of paramount importance in the health of individual and hence describing the complexity of gut flora is important for defining its effect on human health. The limited sensitivity of culture based method has been a problem in the past for defining the extent of microbial diversity in human gut. Recently, the molecular methods used for studying BMS202 chemical structure the human gut flora have facilitated the accurate study of the human gut flora. Such studies showed that the human gut microbiota varies greatly with factors such as age, genetic composition, gender, diseased and healthy state of individual. [6–9]. Majority of the gut microbiota is composed of find more strict anaerobes, which dominate the facultative anaerobes and aerobes by two to three orders of magnitude [10, 11]. Although there have been over 50 bacterial phyla described, the human gut microbiota is dominated by only two of them: Bacteroidetes and Firmicutes while Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria are present in minor proportions
[12, 13]. Studies have shown that the ratio of Firmicutes / Bacteroidetes changes during challenged physiological conditions such as obesity [14, 15], although other studies did not observe any change [16, 17]. Changes in Firmicutes / Bacteroidetes ratio have
also been reported in other physiological conditions such as ageing and diabetes [18, 19]. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence, it is necessary to understand the composition of gut flora of different Tau-protein kinase ethnic groups [20]. However, little effort has been put into understanding the composition of gut flora in Indian population. The physiology of Indian population is different from western population as suggested by YY- paradox and in turn the composition of gut microbes would be different [21]. Hence, in this study we explored the change in composition of gut microbiota in Indian individuals with different age within a family by using culture dependent and molecular techniques. We selected two families each with three individuals belonging to successive generations living under the same roof. Stool samples were collected and DNA extraction, DGGE analysis, preparation of 16S rRNA gene clone libraries was done and the results were validated by qPCR. Obligate anaerobes were isolated from samples collected from one family to study the culturable diversity differences.