In the non-cholinergic cells of the BF of NAs, enhanced nocturnal

In the non-cholinergic cells of the BF of NAs, enhanced nocturnal Fos expression was almost universally seen, but only associated with activation of the orexinergic system for the MS/VDB region. For some of the areas and cell types of the BF, the patterns of Fos expression of DAs appeared similar to those of NAs, but were never associated with activation of the orexinergic system. Also common to DAs and NAs was a general increase in

Fos expression in non-dopaminergic cells of the SUM and anterior VTA. Everolimus Thus, in this diurnal species, voluntary exercise and a shift to a nocturnal chronotype changes neural activity in arousal and reward areas of the brain known to regulate a broad range of neural functions and behaviors, which may be also affected in human shift workers. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Somatodendritic Kv4.2 channels mediate transient A-type potassium currents (I(A)), and play critical roles in controlling neuronal excitability and modulating synaptic

plasticity. Our studies have shown an NMDA receptor-dependent downregulation of Kv4.2 and I(A). NMDA receptors are heteromeric complexes of NR1 combined with NR2A-NR2D, mainly NR2A and NR2B. Here, we investigate NR2B receptor-mediated modulation of Kv4.2 and I(A) in cultured hippocampal neurons. Application Enzalutamide cell line of glutamate caused a reduction in total Kv4.2 protein levels and Kv4.2 clusters, and produced a hyperpolarized shift in the inactivation curve of I(A). The effects of glutamate on Kv4.2 and I(A) were inhibited by pretreatment of NR2B-selective antagonists. NR2B-containing NMDA receptors are believed to be located predominantly extrasynaptically. Like application of glutamate, selective activation of extrasynaptic NMDA receptors caused a reduction in total Kv4.2 protein levels and

Kv4.2 clusters, which was also blocked by NR2B-selective antagonists. In contrast, specific stimulation of synaptic NMDA receptors had no effect on Kv4.2. In addition, the influx of Ca(2+) was essential for extrasynaptic modulation of Kv4.2. Calpain inhibitors prevented the reduction of total Kv4.2 protein levels following activation of extrasynaptic NMDA receptors. diglyceride These results demonstrate that the glutamate-induced downregulation of Kv4.2 and I(A) is mediated by NR2B-containing NMDA receptors and is linked to proteolysis by calpain, which might contribute to the development of neuronal hyperexcitability and neurodegenerative diseases. (C) 2010 Published by Elsevier Ltd on behalf of IBRO.”
“Autism is a severe neurodevelopmental disorder characterized by problems in communication, social skills, and repetitive behavior. Recent studies suggest that apoptotic mechanisms may partially contribute to the pathogenesis of this disorder. Cathepsin D is the predominant lysosomal protease and is abundantly expressed in the brain.

Comments are closed.