The inoculated leaves did not show any yellowing (data not shown) as seen in the tomato leaves. Thus, rice plants NVP-BGJ398 chemical structure are non-hosts to the bacteria. As Arabidopsis thaliana has been used extensively as a plant host model for several pathogens, we tested B. thailandensis and B. pseudomallei infection in Arabidopsis plantlets via the roots. The average disease scores were
maintained at 1 and increased only slightly at days 6 and 7 and were identical for both B. thailandensis and B. pseudomallei infection (Fig 5B). Figure 5 B. pseudomallei and B. thailandensis infection of rice (A) and Arabidopsis (B) plantlets. Each graph represents an experiment of 6 plantlets infected either with B. pseudomallei or B. thailandensis as both types of infections Epigenetics inhibitor resulted in identical disease scores. Each experiment with B. pseudomallei or B. thailandensis infection had
been repeated twice. Discussion B. cepacia, the important opportunistic pathogen often associated with cystic fibrosis and chronic granulomatous disease patients [21], was originally described as a phytopathogen causing soft rot in onions [22]. Subsequently, many strains from various B. cepacia complex were shown to be able to cause disease in the alfalfa infection model as well as in the rat agar bead model [23]. In this study, we show that B. pseudomallei and B. thailandensis are also potential plant pathogens. They are capable of infecting susceptible plants such as tomato. Plant pathogenic bacteria have been shown to express a large number of T3SS effectors capable of interfering with plant basal defense triggered by bacterial pathogen-associated molecular patterns all (PAMPs) as well as Resistance (R) protein-mediated immunity typically characterized by the Hypersensitive Response (HR) [24–26]. The outcome of the interaction with susceptible hosts for these successful pathogens would be disease. We found that the virulence of B. pseudomallei in tomato is contributed
significantly by T3SS1 and T3SS2, but to a much lesser extent by T3SS3. T3SS1 and T3SS2 are likely non-redundant to each other in causing disease because each mutant demonstrates significant attenuation, possibly because both T3SS1 and T3SS2 are co-ordinately involved in pathogenesis. This is the first time that a role has been defined for T3SS1 and T3SS2 in B. pseudomallei, showing that they are functional and not simply vestiges of evolution. The role of T3SS3 could be due to its contribution of a structural component or chaperone to the other two T3SS or an effector which could also interfere with plant cell physiology albeit less efficiently than with mammalian cells. Nevertheless, our study shows the important role played by T3SS in B. pseudomallei pathogenesis in tomato plants. In contrast to tomato, we found that both B. pseudomallei and B. thailandensis are non-adapted for rice. This is not surprising as B.