The non-linear increase of

The non-linear increase of GDC-0973 in vitro the J sc with light intensity for Thick/NR cells [33] reflects increased recombination due to slow charge collection, which is also likely to be responsible for the smaller FF obtained for the Thick/NR cells. It has been suggested that nanorods can negatively affect the organisation of the thick organic layer [22] which is consistent with the results of Figure 3b, i.e. charge collection from the majority of the thick blend in the Thick/NR cells that is not

directly adjacent to the collection electrodes is expected to be poor. The improved charge extraction of Thin/NR cells (Figure 3b inset) is confirmed by PVD and PCD measurements. Figure 3c presents the PVD lifetimes (determined from the decay half-lives) of the cells under quasi-open-circuit conditions as a function of light intensity. In the mostly mono-exponential decay curves, we found systematically shorter PVD lifetimes for the Thin/NR architecture, suggesting that charge carrier recombination is quicker. We attribute this directly to the shorter distances that charges have to travel from the external electrodes into the active film before they recombine

with charge carriers from the opposing electrode. Since extraction is the complementary process, we infer that charge extraction should also be quicker from thin films (Thin/NR). Interestingly, the differences in the PVD rates between the Thin/NR and Thick/NR architectures selleck screening library are not linearly Raf inhibitor correlated to the organic film thickness. This suggests that charges in the thick film (Thick/NR) cannot travel through the whole organic layer without recombining but instead have a higher probability of annihilation RVX-208 with other charges that are trapped in islands of donor or acceptor material

which form in the film due to its non-ideal internal morphology. This is further supported by the fact that the factor of 2 between the PVD lifetimes is conserved over varying background illumination, suggesting that the active layer morphology, which is intensity independent, plays a crucial role in determining the mechanisms of charge carrier recombination. This is also confirmed by PCD measurements [34]. Integrals of these current transients (the transient charge) are shown in Figure 3d. At low background light intensities a similar amount of charges can be collected from both geometries. However, at higher light intensity, where charge densities increase and charge recombination plays a more important role, up to 65% more charges are extracted from the blend in the Thin/NR cell.

Comments are closed.