These cells are able to present antigens to lymphocytes, and play a role in the up-regulation of homing molecules such as DC [4,5]. In contrast to immune response induction, tolerance is the unresponsiveness of the immune system via suppression of T and B cell activation by regulatory Selumetinib molecular weight T cells, deletion or anergy. However, there are many open questions about the function
of the LN, including the migration of cells from the draining area, the role of the LN in the induction of immune responses, the control of parasites or tolerance. It is possible to use knock-out mice, e.g. lymphotoxin α or retinoic acid-related orphan receptor (Ror)-γt knock-out mice to study the function of LN. These mice have reduced or no LN, but they all have further disorders, particularly in the spleen [6,7]. To circumvent the problems of immune
system dysfunction caused by these gene knock-outs, a second method of studying LN function is to remove only the LN of interest. This LN dissection technique permits identification of the role of a specific LN without affecting further organs or areas. Therefore, in this review learn more different research areas are illustrated where LN dissection was performed to identify the function of LN or the consequences of a missing LN. LN dissection is an experimental surgical technique which has been used for many years not only to from analyse the role of LN in the immune system and lymph fluid transport, but also in different diseases in animal models. LN were removed from many different draining sites such as the skin-draining site (for example the axilliary LN [8], the brachial LN [9], the popliteal LN [10–12] or the inguinal LN [13,14]), the head–neck region (cervical LN [15–19]) or the peritoneal area (the mesenteric LN [20–23] and the coeliac LN [24]). For dissection of the mesenteric
LN (mLN), for example, the abdomen was opened and the gut was taken out so that the mLN were visible (Fig. 2a). The mLN were excised carefully in order not to injure the superior mesenteric artery lying behind, whereas the connection of the lymph vessels and small blood vessels to the LN was disturbed. Afterwards, the gut was replaced in the abdomen and the abdomen was closed. LN are integrated as central organs in the lymph vessel system. The afferent lymphatics coming from the draining area, which could be the gut system or the skin, transport fluid, proteins, lipids and different cell populations of the immune system to the LN sinus. The efferent lymphatics leave the LN at the medullar site to greater LN or veins of the blood system. After LN dissection, the lymph vessel system is destroyed and the afferent and efferent system vessels are reconnected.