This institute was launched on December 18, 1934, and in addition

This institute was launched on December 18, 1934, and in addition to Bach, Alexander Ivanovich Oparin (best known for the theory on the origin and early evolution of life) was one of the two founders. For quite a long time, Krasnovsky served as the head of the Laboratory of Photobiochemistry. Krasnovsky’s research and contributions are best described by himself in many reviews (see Krasnovsky 1948, 1960, 1965, 1972, 1977, 1979, 1985a, 1985b, 1992).

His lifetime journey in photosynthesis is described wonderfully well in an invited article that was first written in Russian by Acad. A.A. Krasnovsky, and then translated in English, edited, and published later by his son A.A. Krasnovsky, Jr. (1997). The main www.selleckchem.com/products/cobimetinib-gdc-0973-rg7420.html goal of his laboratory was the study of the mechanisms of harvesting of solar energy by photosynthesis. It was already known that light energy triggers redox reactions in chlorophyll molecules, but the mechanism of that phenomenon was unclear (see

Rabinowitch 1945, 1951, 1956). Rabinowitch and Weiss (1936), as well as Porret and Rabinowitch (1937), had Sepantronium observed reversible oxidation of chlorophyll in solutions. The single-minded goal of Krasnovsky in photosynthesis research was to understand how the molecule of chlorophyll participates in photosynthesis. In 1948, Krasnovsky obtained his habilitation (D. Sc., Biology), after his outstanding studies on photoreactions of chlorophyll in vitro; the title of this thesis was Investigation of photochemical reactions of photosynthesis, whereas the title of his classic paper was Reversible photochemical reduction of chlorophyll by ascorbic acid; it was published in 1948 (Krasnovsky 1948). In this paper, he observed photoreduction of chlorophyll, accompanied by

the formation of an intermediate, absorbing in the green region of spectrum (the so-called pink chlorophyll), which was reversible in the dark, regenerating the Resveratrol initial chlorophyll. This photoreaction became known as “Krasnovsky Reaction” in the photosynthesis literature. Similar photoactivity was also obtained for bacteriochlorophyll, pheophytin, and protochlorophyll (see Krasnovsky 1965). The reversible photooxidation of various chlorophylls in model systems was also found; these data have been accepted as the first experimental evidence for photoinduced redox activity of chlorophyll and its possible role in the primary reactions of photosynthesis. Krasnovsky and his coworkers showed that chlorophyll is involved in photosynthesis, not only for light-harvesting, but also in buy BIIB057 electron transport as a donor or an acceptor. However, the details of the partners were not clear at that time.

Comments are closed.