We demonstrated only preparation of one type of particle shape, b

We demonstrated only preparation of one type of particle shape, but it is possible to make different particle

shapes if substrates with other crystallographic orientations are used [2, 7]. Since the nanoparticles are supported on the annealable and electrically conducting Nb-doped strontium titanate (STO) substrates, the samples can be used both in electrocatalysis and gas phase catalysis. Methods Preparation of monodispersed colloidal silica spheres Silica nanospheres were synthesized following the Stöber-Fink-Bohn method [11] starting from tetraethyl orthosilicate (TEOS 98%, Sigma-Aldrich, St. Louis, MO, USA), deionized water, ammonia (25%, Merck, Whitehouse Station, NJ, USA), and absolute ethanol (99.9%, Paclitaxel cost Riedel-de Haën, Seelze, Germany) as precursor alkoxide, hydrolyzing agent, catalyst, and solvent, respectively. Two mother solutions were prepared: one containing ammonia-water and another one containing TEOS-ethanol. First, we add the ammonia-water solution to a solution of TEOS-ethanol kept at 50°C ± 1°C, in one step. Then, the solution was mixed and put

back into the controlled water bath (50°C ± 1°C), for 1 h (no mixing). After 60 min, the resulting spheres were separated from the BVD-523 mouse liquid phase with centrifugation and then ultrasonically dispersed in deionized water. The procedure was repeated three times. Then, the particles were dried in an oven at 50°C. Note that using this method, the final particle size critically depends on the reagent concentrations, molar ratio, and reaction temperature, so that difficulties are usually encountered in obtaining both a good control of the sphere size in a wide dimensional range and monodispersity with size distribution as selleck products narrow as possible. In this paper, we applied conditions for the synthesis of silica particles with well-defined particle size as described in [12]. We synthesized samples with nominal particle sizes of 150 and 450 nm. Preparation

of monolayers of silica colloidal spheres on the STO substrates The substrates are commercially available epi-polished (100)-oriented STO single crystals doped with Nb (MTI Corporation, Richmond, CA, USA; 0.7% to 1% Nb doping, resistivity 0.0035 to 0.007 Ω cm). The samples were etched for 4 min in a 3:1 mixture of concentrated nitric and hydrochloric Urease acid, rinsed in deionized water, placed in a quartz tube, and annealed in air at 800°C; 0.2 wt.% of dried monodispersed colloidal silica was suspended in methanol using an ultrasonic bath. In order to deposit the monolayer of silica spheres, standard monodispersed colloidal spheres can be self-assembled into ordered 2D arrays using several approaches [13, 14]. Initially, we used a method based on the transferring monolayer formed on the air-liquid interface by slowly draining colloid solution. This method works well for silica containing substrates such as glass slides.

Comments are closed.