In mutant mice lacking NE, induction of Fos was normal in all regions of the hippocampus and amygdala shortly after fear conditioning. In contrast, when testing contextual fear 1 day after framing, induction of Fos in CA1 and the central nucleus of the amygdala (CeA), but not CA3, the dentate gyrus or other amygdaloid nuclei, was impaired in the mutant mice. This pattern corresponded to the memory retrieval deficit exhibited by these mice. On the other hand, induction was normal in CA1 and CeA when testing cued
fear 1 day after training, or contextual fear 1 week or 1 month after training, conditions in which retrieval are normal in the absence of NE. Acute restoration of NE in the mutant mice before testing but not before training rescued retrieval of contextual fear and restored Fos induction in CA1 and CeA. Nec-1s solubility dmso Because NE facilitates retrieval through the activation of beta(1)-adrenergic receptors, beta(1) knockout mice were also examined and found to exhibit reduced induction of Fos in CA1 and CeA following retrieval. Based on these and previous results, we hypothesize that adrenergic signaling is critical for the full activation of CA1 pyramidal neurons in response to excitatory input from CA3 pyramidal neurons conveying retrieved contextual information. selleck inhibitor (C) 2011 IBRO. Published
by Elsevier Ltd. All rights reserved.”
“Drug resistance is a growing concern with clinical use of tyrosine kinase inhibitors. Utilizing in vitro models of intrinsic drug resistance and stromal-mediated chemoresistance, as well as functional mouse models of progressive and residual disease, we attempted to develop a potential therapeutic approach designed to suppress leukemia recurrence following treatment with selective
Inulin kinase inhibitors. The novel inhibitor of apoptosis (IAP), LCL161, was observed to potentiate the effects of tyrosine kinase inhibition against leukemic disease both in the absence and presence of a stromal protected environment. LCL161 enhanced the proapoptotic effects of nilotinib and PKC412, against leukemic disease in vitro and potentiated the activity of both kinase inhibitors against leukemic disease in vivo. In addition, LCL161 synergized in vivo with nilotinib to reduce leukemia burden significantly below the baseline level suppression exhibited by a moderate-to-high dose of nilotinib. Finally, LCL161 displayed antiproliferative effects against cells characterized by intrinsic resistance to tyrosine kinase inhibitors as a result of expression of point mutations in the protein targets of drug inhibition. These results support the idea of using IAP inhibitors in conjunction with targeted tyrosine kinase inhibition to override drug resistance and suppress or eradicate residual disease. Leukemia (2010) 24, 2100-2109; doi:10.1038/leu.2010.