32 TLR agonists are therefore potent stimulants of IFN-I release

32 TLR agonists are therefore potent stimulants of IFN-I release by antigen-presenting cells.33 To mimic the immune response observed PD0332991 manufacturer during viral infections, PBMC were treated overnight with poly(I:C) in order to induce endogenous production of IFN-I. In a preliminary study, we confirmed that poly(I:C) treatment of PBMC from several donors resulted in IFN-α secretion ranging between 30 and 200 pg/ml (data not shown). The addition of poly(I:C) 24 hr prior to anti-CD3 activation led to an average decrease of 40% (P = 0·007) in the production of aTregs (Fig. 4; for cell numbers see Fig. S2). However, in

contrast to IFN-α, poly(I:C) had an inconsistent effect on aTeffs (Figs 4 and S2), which may result from the effects of other cytokines (e.g. IFN-β) induced by TLR3 ligation. To further address the role of endogenously produced IFN-I in the suppression of

aTregs, these assays were also performed in the presence of an antibody that blocks binding of IFN-I to cellular receptors, as well as neutralizing antibodies against TNF-α and IL-6 (Figs 4 and S2). Blocking of IFNα/β receptor produced a significant (P = 0·0001) normalization of Treg activation, with an average recovery LY2835219 clinical trial of 92% in Treg activation. In contrast, the presence of antibodies against TNF-α and IL-6 had a minimal effect on the suppression of Treg activation induced by poly(I:C). Taken together, these data suggest that innate signals that mimic the immune response to viral infections are able to suppress Treg activation, and that IFN-I probably plays a major role during this process. As IL-2 plays a critical role in Treg development and proliferation,34,35 and because it has previously been shown that IFN-α is a potent

inhibitor of IL-2 production,36 we addressed whether the reduced expansion of Tregs in the presence of IFN-α might result from a decrease in IL-2 production in the polyclonally stimulated PBMC cultures. To that end, IL-2 levels in the culture supernatants were measured by ELISA at 24 and 48 hr post anti-CD3 activation of PBMC in the absence or presence of exogenous IFN-α (1000 U/ml) Glutathione peroxidase (Fig. 5). IFN-α reduced the production of IL-2 in polyclonally activated PBMC by an average of 45% in the first 24 hr (P = 0·01) and by an average of 55% after 48 hr (P = 0·05) (Fig. 5a). This reduction in IL-2 production correlated with a 66% (P = 0·04) reduction in the generation of aTregs (Fig. 5b). In order to address whether IL-2 inhibition by IFN-α could be reversed in activated PBMC, we tested whether suppression of Treg activation was reversed by exogenous IL-2 (100 Units/ml). Indeed, Treg activation in the presence of IFN-α was improved almost threefold (P = 0·01) by the addition of IL-2 (Fig. 5b), strongly suggesting that down-regulation of endogenous IL-2 production may play a critical role in IFN-α-mediated suppression of Treg activation.

Hypertension that developed after nephrectomy was not an exclusio

Hypertension that developed after nephrectomy was not an exclusion criterion. Of 282 patients who donated between 1986 and 2000, 69 donors could not be contacted.

Sixty-nine donors were older than 65 years, 6 had diabetes mellitus, 1 had a history of coronary artery disease, 4 had malignancy and 5 had documented hypertension before nephrectomy, leaving 101 patients for comparison with the control group. Patients had to be at least 12 months post-nephrectomy and the median time post-donation was 5 years. The mean GFR of kidney donors was 75 mL/min, which was approximately 25 mL/min per MK-8669 1.73 m2 (0.42 mL/min per 1.73 m2) less than that of controls. The frequency of CAC and mean calcification scores were similar for kidney donors (13.9%; 4.5 ± 22.6) and controls (17.2%; 13.2 ± 89.2). CAC was not associated with decreased GFR, and the correlation between CAC and GFR was not statistically significant. Kidney donors with calcification were more likely to be older (P = 0.003)

and male (P = 0.001). Age- and sex-adjusted analysis showed an association between greater parathyroid hormone (PTH) levels (odds ratio 1.023; 95% CI: 1.001–1.045; P = 0.037) and CAC in kidney donors.25 Recognizing that a fixed lower limit of GFR does not Protein Tyrosine Kinase inhibitor adequately define donor acceptability (probably too low for young donors and too high for older donors), Thiel and colleagues developed calculations taking into account the life expectancy

of the donor – the Minimum Creatinine Clearance.8 Discussions with nephrologists and gerontologists in Switzerland led them to define a creatinine clearance (CrCl) of 40 mL/min at age 80 years as adequate to maintain fluid and electrolyte homeostasis in the donor as well as maintaining adequate levels of erythropoietin and active Vitamin D. A second calculation was made targeting a CrCl of at least 30 mL/min per 1.73 m2 at age 80 years as the absolute minimum acceptable for an elderly person (but possibly requiring some intervention GNA12 to maintain normal, age-related quality of life). Using such a formula, a 30-year-old donor may require a CrCl of 123 mL/min per 1.73 m2 while the level for a 70-year-old may be of the order of 68 mL/min per 1.73 m2. Most of the evidence relating to renal function in living donors comes from retrospective cohort studies commonly of small size and with poor follow up (see Table 1). There is a lack of prospective long-term data regarding live donor renal function following donation, particularly in relation to consequences of donation in certain donor subgroups such as those with reduced GFR.

The c 14524G>A change in

exon 101 resulted in a p Val4842

The c.14524G>A change in

exon 101 resulted in a p.Val4842Met substitution that mapped to the M8 trans-membrane fragment of the Ca2+ pore domain [27]. RyR1 expression analysis did not show truncated proteins but instead a major decrease of the mature protein, indicating the residual presence of a low amount (15 ± 8%) of mutated Met4842 DZNeP mw protein in the proband’s muscle (Figure 6). Patient 2 was p.[Thr4709Met] + p.[Glu4181Lys] compound heterozygous. The paternal p.Thr4709Met substitution, resulting from a c.14126C>T change in exon 96 that affected a conserved threonyl residue located in the Ca2+ pore domain of the protein, has been previously reported in a case of recessive core myopathy [28]. The maternal p.Glu4181Lys novel substitution that resulted from a c.12541G>A transition in exon 90,

affected a highly conserved glutamyl residue located in a cytoplasmic domain of unknown function (Table 2). Patient 3 was compound heterozygous for the novel p.[Glu4911Lys] and p.[Arg2336Cys] variants. The paternal p.Glu4911Lys (c.14731G>A, exon 102) variant affected selleck chemical a highly conserved glutamyl residue that mapped to the M10 trans-membrane fragment of the Ca2+ pore domain [27]. The maternal p.Arg2336Cys (c.7006C>T, exon 43) variant also substituted a very well-conserved arginyl residue located in the MH2 domain of the protein, usually associated with malignant hyperthermia dominant mutations. However, no anaesthetic history has been reported in the patient or relatives harbouring the p.Arg2336Cys variant (Table 2). Patient 4 was p.[Pro3202Leu] + p.[Gly3521Cys] compound heterozygous. Both variants are novel and substituted highly conserved residues among species and RYR isoforms. Roflumilast The paternal p.Pro3202Leu (c.9605C>T, exon 65) variant affected

a prolyl residue located in a central region of the protein of unknown function. The maternal p.Gly3521Cys (c.10561G>T) variant substituted a glycyl residue located within exon 71 adjacent to the alternatively spliced region I (ASI), possibly involved in interdomain interaction (Table 2) [29]. Patient 5 was p.[Pro3138Leu] + p.[Arg3772Trp] compound heterozygous. The paternal p.Pro3138Leu (c.9413C>T) variant affected a highly conserved prolyl residue that mapped to exon 63. This variant has not been reported previously. The maternal p.Arg3772Trp (c.11314C>T, exon 79) variant has been recently reported in an MHS patient [30]. The mutation substituted a highly conserved argininyl residue into a nonconservative tryptophan located in a cytoplasmic domain of unknown function (Table 2). Analysis of patient 6′s cDNA revealed the presence of two abnormal transcripts characterized by insertions of 132 bp and 32 bp between exons 56 and 57, and the presence of a normally spliced transcript. Genomic sequencing of intron 56 identified a homozygous c.

In addition LMWH has less impact on platelet function, and thus m

In addition LMWH has less impact on platelet function, and thus may cause less bleeding. LMWH binds anti-thrombin III and inhibits factor Xa, but most LMWH (50–70%) does not have the second binding sequence needed to inhibit

thrombin, because of the shorter chain length. In most cases the affinity of LMWH for Xa versus thrombin is of the order of 3:1. The anticoagulant effect of LMWH can be monitored by the anti-factor Xa activity in plasma. LMWH is ROCK inhibitor cleared by renal/dialysis mechanisms, so dosage must be adjusted to account for this.14 When high flux dialysers are used, LMWH is more effectively cleared than UF heparin. LMWH is often administered into the venous limb of the dialysis circuit. Clexane® (Sanofi-Aventis, New South GSK2126458 Wales, Australia) is one of the most commonly used LMWH

in Australia and has the longest half-life. It is predominantly renally cleared. Clexane has been found to have linear pharmacokinetics over the clinical dosing range.15 The dose generally correlates with patient weight and Clexane can be predictably dosed per kg, in normals; however, dose reduction need to be made in the elderly, in the presence of renal impairment and in very obese patients, to avoid life-threatening bleeding. Clexane generally does not accumulate in 3/week dialysis regimens, but there is a risk of accumulation in more frequent schedules. There is no simple antidote

and in the case of severe haemorrhage-activated factor VII concentrate may be required. On the other hand patients dialysing with a high flux membrane, as compared with a low flux membrane, may require a higher dose because of dialysis clearance. Effect and accumulation can be monitored by the performance of anti-Xa levels. A common target range is 0.4–0.6 IU/ml anti-Xa but a more conservative range (0.2–0.4 IU/ml) stiripentol is recommended in patients with a high risk of bleeding – the product insert should always be consulted. The use of LMWH such as Clexane for haemodialysis anticoagulation is well supported in the literature.16–18 In this context Clexane can be administered as a single dose and generally does not require to be monitored. It is as yet unclear whether Clexane can successfully anticoagulate patients for long overnight (nocturnal) haemodialysis. Against the utility of LMWH, the purchase price of LMWH still significantly exceeds UF heparin. The other available forms of LMWH such as Dalteparin (Fragmin®; Pfizer Australia, New South Wales, Australia), Nadroparin, Reviparin Tinzaparin and newer LMWH vary somewhat, especially in anti-Xa/anti-IIa effect. The higher this ratio the more Xa selective the agent and consequently the less effect protamine has on reversal. Clexane has a high anti-Xa/anti-IIa ratio of 3.8, and is less than 60% reversible with protamine.

5%), whereas

only one out of 27 strains isolated in Japan

5%), whereas

only one out of 27 strains isolated in Japan belonged to classical serotypes, though this strain (O142:H6) was isolated from someone who had traveled to the Philippines. The strains which were isolated in Japan were distributed in O153 and O157 serogroups. There were no common serotypes between those from Thailand and Japan. We previously STA-9090 purchase reported 5 HMA-bfpA types (34). In this study, we identified a new type, HMA-bfpA type 6 (Fig. 1). All the strains of this type were isolates from Thailand (Table 2). Most strains isolated in Japan were bfpA types 1, 4 and 5, while, those isolated in Thailand were bfpA type 2, 3 and 6. Several serotypes could be assigned to each bfpA type. The perA genes were classified as 8 HMA-types (Table 2). Most strains isolated in Japan were perA types A and B, whereas those isolated in Thailand were perA types C to H. Although perA variation was more complex than bfpA variation, each perA genotype corresponded

to a main bfpA type. Amplicons of the bfpA gene (including new HMA-type) and perA gene were sequenced. PCR amplification was performed with whole coding region primers (Table 1). Figure Lenvatinib clinical trial 5 shows the phylogenetic tree of the perA sequences of our strains and those reported by Lacher et al. (29). The perA genotypes were clustered into four major groups, α, β, γ and δ, as described (29). Most of the isolates from Japan were in the β cluster. In this study, the new perA sequence types, β3.2, β3.3 and β3.4 were identified (Fig. 2). HMA typing produced similar results

to those of sequence typing in the polymorphism analysis on bfpA and perA. All except 4 strains showed autoaggregation (Table 2). Since aggregates of various sizes were observed, we defined the extent of autoaggregation according Terminal deoxynucleotidyl transferase to 4 categories (+++ to –) (Fig. 3b). Those in category +++ (n= 30) were huge aggregates clearly visible with the naked eye, category ++ (n = 4) aggregates of medium thickness, and category + (n= 17) small, weak aggregates (Fig. 3b). Particle measurements were also carried out on the autoaggregates in each category and a different peak was observed for each one (Fig. 3a). When morphological changes were investigated by scanning electron microscopy, we observed microcolony structures at 3 hr post inoculation. Microcolonies in category +++ were intricately intertwined, whereas in category +, they were barely visible (Fig. 3c). The rate of aggregation was quantitated by measuring the turbidity with reference to the E2348/69 strain using the representative strain of each category (Fig. 3e). Significant differences were observed among categories (P < 0.02). Adherence to HEp-2 cells has been used to identify EPEC (5, 38). In this regard, LA is a qualitative adherence pattern consisting of compact microcolonies on the surface of epithelial cells.

Representative plots from an individual mouse; data are derived f

Representative plots from an individual mouse; data are derived from two independent experiments with three mice each. Intracellular MCP-1 data were obtained by gating on the viable cells from thymi of control or T.

cruzi infected mice and later on the CD4+, CD8+, or CD19+ cells similarly as shown in Supporting Information Dabrafenib manufacturer Fig. S3D but in the thymus. Figure S2. Recirculation of peripheral T cells to the thymus is independent of TCR specificity. OT-I mice (OVA-specific TCR transgenic mice) were infected with 5 × 105 trypomastigotes (i.p.) and were sacrificed the day of parasitemia peak. Splenocytes (2–3 × 107) from OT-I infected mice were obtained, CFSE labeled, and adoptively transferred to WT- infected recipients. Twenty-four hours later thymocytes from recipient mice were obtained and the percentage of CD4+ cells, CD8+ cells, and B cells (CD19+) was determined in the CFSE+ population by flow cytometry. The expression of OVA-specific Vb5+ cells was determined in the CD8+CFSE+ cells. Plots are representative of an individual recipient mouse. Data are derived from two independent experiments with two mice each. Data were obtained by gating on the viable cells (Supporting Information Fig. S3A). Figure S3. Gating strategies used in the flow cytometry data in this work. (A) Viable cells from

a thymus in a forward versus side scatter dotplot. selleck screening library (B) Viable cells from a thymus of a control or a T. cruzi infected mice in a forward versus

side Smoothened scatter dotplot. Then CD4+ or CD8+ or double-negative cells were gated. (C) CD4, CD8, or CD19 expression in CFSE+ cells. (D) CD4+, CD8+, or CD19+ cells on viable splenocytes from control or T. cruzi infected mice. “
“Several mechanisms account for the beneficial effect of intravenous immunoglobulin (IVIg) in autoimmune and inflammatory diseases. These mechanisms include effects on the cellular compartment and on the humoral compartment. Thus, IVIg impacts on dendritic cells, macrophages, neutrophils, basophils, NK cells, and B and T lymphocytes. Several studies have emphasized that the antiinflammatory effect of IVIg is dependent on α2,6-sialylation of the N-linked glycan on asparagine-297 of the Fc portion of IgG. However, recent reports have questioned the necessity of sialylated Fc and the role of FcγRIIB in IVIg-mediated antiinflammatory effects. In view of the critical role played by Th17 cells in several autoimmune pathologies and the increasing use of IVIg in several of these conditions, by using neuraminidase-treated, desialylated IVIg, we addressed whether the α2,6-sialylation of IgG is essential for the beneficial effect of IVIg in experimental autoimmune encephalomyelitis (EAE), a Th17-driven condition, and for the reciprocal modulation of helper T-cell subsets. We observed no difference in the ability of IVIg to ameliorate EAE irrespective of its sialylation.

We found that infants failed to learn the labels in AD speech, bu

We found that infants failed to learn the labels in AD speech, but succeeded in learning the same labels when they were produced in ID speech. Experiment 3 investigated the role of variability in learning from ID speech. When the labels were presented in ID prosody with

no variation across tokens, infants failed to learn them. Our findings indicate that ID prosody can affect how readily infants map sounds to meanings learn more and that the variability in prosody that is characteristic of ID speech may play a key role in its effect on learning new words. “
“Recent research has demonstrated a relationship between infants’ tonic electroencephalogram (EEG) patterns and approach-style jealousy responses (Mize

& Jones, 2012). Although it has been found that adults exhibit approach-style neural activity during jealousy paradigms (Harmon-Jones, Peterson, and Harris, 2009), parallel research on neural activity during a jealousy paradigm in infants is lacking from the literature base. The purpose of the LEE011 mouse current research is to examine EEG patterns of 35 infants (Mean age = 8.92 months old) in a social-rival paradigm designed to elicit jealousy responses. Consistent with past research, infants demonstrated more approach-style, jealousy-related behaviors when their mothers attended to a social-rival than to a nonsocial rival. Additionally, infants demonstrated approach-style anterior EEG activity during the social-rival condition, a pattern that is associated find more with jealousy. The current findings suggest that the physiological underpinnings for the emotions that motivate the protection of important dyadic relationships are

in place early in ontogeny. Therefore, jealousy-type behaviors and physiological responses begin to be observable as early as 9-months-old when maternal attention is lost to a social-rival. “
“Research has demonstrated that infants recognize emotional expressions of adults in the first half year of life. We extended this research to a new domain, infant perception of the expressions of other infants. In an intermodal matching procedure, 3.5- and 5-month-old infants heard a series of infant vocal expressions (positive and negative affect) along with side-by-side dynamic videos in which one infant conveyed positive facial affect and another infant conveyed negative facial affect. Results demonstrated that 5-month-olds matched the vocal expressions with the affectively congruent facial expressions, whereas 3.5-month-olds showed no evidence of matching. These findings indicate that by 5 months of age, infants detect, discriminate, and match the facial and vocal affective displays of other infants.

This production occurs physiologically at a low rate [83] as part

This production occurs physiologically at a low rate [83] as part of the immunotolerant mechanisms aimed at counterbalancing an unwanted

boost of immune responses. MHC-I and -II expression by enterocytes increases as a consequence of stress and infection. These molecules present antigens to antigen-experienced T cells resident in LP as part of the protective immune response [84]. MHC-II-associated peptides produced by enterocytes can be packed in the form of exosomes, detached from the basal pole. These types of exosomes, in this situation named tolerosomes, participate in the generation of a tolerogenic intestinal environment [85]. The exact structure Fludarabine research buy of tolerosomes is unknown, but it is supposed that they may contain other co-stimulatory molecules, which could induce tolerance to the MHC-associated peptide [86]. The tolerosomes were discovered less than 10 years ago. It has been known from 1983 that oral tolerance is transferrable through serum. Tolerosomes were identified by electron microscopy in 2001, in the serum of animals subjected to induction of oral tolerance, namely in the insoluble fraction resulted by ultracentrifugation.

The soluble fraction, containing serum without tolerosomes, could no longer mediate the transfer of oral tolerance [85]. This discovery has proved the existence of intercellular communication through exosomes during induction of oral tolerance. What exactly happens with tolerosomes after their production is yet not fully elucidated. A recent study suggested that they harbour the αvβ6 integrin and their targets are migratory DCs (CCR7+CD103+ DC), to whom they Selumetinib order convey the necessary information for mounting tolerance to luminal antigens. CD103+ DCs will prime Tregs after their arrival in MLN which are specific for the MHC-associated peptide contained in tolerosomes [87]. Another possibility, as an intact portal circulation is needed in order for oral tolerance to develop and tolerosomes

are retrievable in serum, could be that tolerosomes are also addressed to DCs in the liver, but this has yet to be proved. Enterocytes also favour the translocation of intact antigens from the gut lumen into LP. This is achieved Sodium butyrate in a controlled manner through Ig receptors [88]. In newborn mice, and during the entire human life, neonatal Fc receptor (FcRn) enables internalization of the IgG–antigen complexes [89] as well as IgG externalization, allowing binding to the specific antigen [90]. Most interestingly, FcRn is also present in the mammary glands, where it contributes to exocytosis of IgG–antigen complexes in milk [91]. The excretion of these immune complexes in the human milk induces a state of profound and prolonged oral tolerance in the offspring, due to induction of antigen-specific Tregs[92]. FcRn is also found in the placenta, allowing materno–fetal transfer of IgG [93].

However, this observation calls into question the relevance of st

However, this observation calls into question the relevance of studying mitochondria from tissue not considered to be a primary target in the disease; selective recruitment suggests the presence of unique mitochondrial spinal cord components interacting with mSOD1 in such a way as to encourage dysfunction ICG-001 order [69]. Oxidative stress has been implicated as part of the pathogenic process in ALS and may derive from defective oxidative phosphorylation [45]. Investigation of ALS patients has identified: (i) a sporadic microdeletion in the gene encoding a subunit of cytochrome c oxidase, resulting in defective assembly of the holoenzyme

[70]; (ii) evidence of decreased activity of respiratory chain complexes I, II, III, IV in post-mortem central nervous system tissue [71]; (iii) increased levels of oxidized ETC cofactor CoQ10 in SALS cerebrospinal fluid (CSF) [72]; and (iv) increased levels of ROS and lactate in blood [73]. Studies in mSOD1 transgenic mice have supported these observations. A reduction in activity of the individual ETC complexes, beginning with a presymptomatic early decrease in activity of complex I and leading to

decreased function of complex IV after disease onset, has been observed in the ventral horn motor neurones of mSOD1 G93A mice [58,74,75]. Further investigation found this decrease in ETC activity could be rescued with the introduction of exogenous cytochrome c in a reduced state. Thus,

cytochrome c has been implicated Bafilomycin A1 supplier as a major defective protein in the respiratory chain, specifically in its oxidized form [76]. Defective oxidative phosphorylation leads to the generation of ROS, which is devastating for both the mitochondria and the cell [58,77–79]. Studies of tetracosactide patient CSF have found evidence of this free radical damage, such as an increased concentration of 3-nitrotyrosine, indicative of peroxynitrite mediated nitration of protein tyrosine residues [80]. This has been supported by mSOD1 mouse models, which show evidence of oxidative stress in spinal cord motor neurones, including enhanced oxyradical production, carbonylation of proteins and peroxidation of lipids in the mitochondrial membrane, all resulting in severe consequences for the mitochondria, and indeed, the cell [78]. Peroxidation of the anionic IMM lipid cardiolipin disrupts its hydrophobic and electrostatic interaction with cytochrome c, resulting in high levels of the protein in the IMS [76,81–83]. This renders the cell vulnerable to apoptosis, as well as disrupting oxidative phosphorylation [81–83], and exacerbates the levels of ROS being produced by the mitochondria, resulting in cell toxicity [82]. Impaired calcium buffering by motor neurone mitochondria may be a key factor in the pathogenesis of ALS.

Measurements were carried out using the O2C monitoring system und

Measurements were carried out using the O2C monitoring system under temporary digital occlusion of the pedicle. After 4 weeks, 17 free flaps were found to be autonomized indicated by the O2C measurements comparing both values before and after digital compression of selleck chemical the vascular pedicle. After 12 weeks, 41 patients had completion of free flap autonomization, as

indicated by the HbO2 and CF before and after pedicle compression. The location of free flap in the lower jaw (P < 0.0001 after 4 weeks, P = 0.013 after 12 weeks), fasciocutaneous radial forearm flaps after 4 weeks (P < 0.0001), and not irradiated recipient site after 4 weeks (P = 0.014) were found to be positive factors significantly influencing autonomization. In conclusion, free flap autonomization depends on several variables which should be considered before further surgery after free flap reconstruction as the transferred

tissue can be still dependent on its pedicle. © 2012 Wiley Periodicals, Inc. Microsurgery, 2012. “
“Skull base reconstruction is challenging due to its proximity to important anatomical structures. This report evaluates the use of perforator flaps for Selleckchem GSK458 reconstruction of skull base defects after advanced recurrent tumor resection. Fourteen free perforator flaps were transferred to reconstruct skull base defects in 14 consecutive patients, from October 2004 to May 2011. All patients had advanced recurrent neoplasms that were previously treated with either radiation therapy or surgery. The surgical defects were reconstructed using various perforator flaps mainly the deep inferior epigastric artery perforator flaps, anterolateral thigh (ALT) flaps, or thoracodorsal artery perforator flaps. The outcomes following reconstruction

and associated complications were evaluated. The overall free flap success rate was 93% (13/14). One ALT flap was lost. Three patients (20%) had a cerebrospinal fluid fistula, and two of them developed meningitis. No complications were observed at the donor site. The use of Astemizole perforator flaps may be a viable option for reconstruction of skull base defects after the resection of advanced recurrent tumor. © 2014 Wiley Periodicals, Inc. Microsurgery 34:623–628, 2014. “
“Purpose: Assessment of donor site morbidity and recipient site complications following free radial forearm osteocutaneous flap (FRFOCF) harvest and evaluation of patient perceived upper limb disability for free radial forearm osteocutaneous versus fasciocutaneous flaps (FRFF). Methods: First a case series was undertaken of 218 patients who underwent an FRFOCF at two tertiary referral centers between February 1998 and November 2010. Outcomes included forearm donor site morbidity and recipient site complications.