We selected 5 known tumor-related genes i e , K-ras, c-MYC, DNMT1

We selected 5 known tumor-related genes i.e., K-ras, c-MYC, DNMT1, Tpd52, CDKN1b for PCR confirmation [Figure 3]. It is known that genetic

alterations may contribute substantially to the pathogenesis of colon cancer. Point mutation of K-ras (occurring in 40% of sporadic CRCs) is an established predictor of absence of response to epidermal growth factor receptor (EGFR) -targeted agents [24, DMXAA mouse 25]. Hutchins [26] reported that KRAS mutant tumors were more evenly distributed: 40% right colon, 28% left colon, and 36% rectal tumors compared to BRAF mutant tumors. Meanwhile, the relationship between Folic acid and KRAS has been studied. Some suggested that the effect of folate on rectal cancer risk is different to men and women which may depend on the status of K-ras mutation of tumors. They

believed that folate intake was related to a decreased risk of G > A transitions (RR-0.08, buy PD98059 95% CI = 0.01-0.53) while an inversely risk of G > T and G > C transversions in tumors (RR = 2.69, 95% CI = 1.43-5.09)[27]. Figure 3 Differentially expressed genes validated by real-time polymerase chain reaction (q-PCR). We used 18s rRNA as an internal control. Relative mRNA expression was calculated according to the 2-ΔΔT method. Data are expressed as the mean ± SD of 10 samples. The significance of the varieties between the average values of groups DMH and FA3 was analyzed through student’s t-t test. (*: P < 0.05, between FA3 and DMH group) CDKN1b (cyclin-dependent kinase inhibitor Lck 1B, FC = 7.992979) which is also known as p27 encodes a protein which belongs to the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitor proteins [28] It is often considered as a cell cycle inhibitor protein because its major function is to control the cell cycle progression at G1 phase so that can prevent the development of cancer. Reduced p27 levels were found in different cancerous stages in hepatocelluar carcinomas [29]. Some studies demonstrated that

loss of p27 expression is associated with a higher response rate to CRC chemo-therapy [30]. The p27KIP1 null (-/-) mouse shows a significant increase in cell proliferation, resulting in approximately 30% increase in mass size, multiple organ hyperplasia [31]. Together, these researches supported p27 as an important tumor suppressor and suggest that events leading to p27 upregulation may inhibit the tumor progression. The methylation of genomic DNA in malignant cells is catalyzed by DNA methytransferases(DNMT)which include maintenance DNA methyltransferase (Dnmt1), DNMT1, de novo DNA methyltransferases (Dnmt3a and 3b), 3a/3b. DNA methylation is an important form of epigenetic that can regulate some gene expression such as c-Myc, CDKN2a, CDH1 and VDR et al [32–34].

One possibility may be the dispersal of spores and/or cysts (rest

One possibility may be the dispersal of spores and/or cysts (resting stages), however, our knowledge about the number of ciliates that can form such resting stages in nature is very limited [80]. Furthermore, PI3K inhibitor physical mechanisms of transport for resting stages between different basins are difficult to imagine, considering the lack of fluid flow, high density, and

lack of animal vectors in the brines. In contrast, this scenario may be more plausible for cysts/spores in halocline/interphase habitats. Physical transport of resting stages between haloclines at different basin sites could explain the observed similarities in ciliate interphase communities (Figure 3). The deep basins AZD1152-HQPA purchase in the eastern Mediterranean Sea may have recruited their protistan seed communities from Atlantic Sea water during the Zenclean Flood (~5.3 mya), when the Strait of Gibraltar opened permanently and refilled the mostly dried out Mediterranean Sea [81]. Subsequently, due to the dissolution of evaporites and the rise of anoxia in deep basins the water masses became physically separated

from each other. Anoxia and hydrochemistry likely exerted an increased pressure on the original protistan communities. Species sorting may have been driven through environmental filtering [37, 42, 62, 82]. This is a predictable and fundamental process of community assembly [83], that allows only those taxa with the genomic and physiological potential to cope with each specific set of environmental conditions. This has been evidenced for recent ciliate communities [40]. The normsaline and normoxic deep-sea water separating the different hypersaline anoxic basins from each other then became an environmental barrier for most protists (with the exception of cyst-forming taxa), with the consequence that genetic exchange among the different brines was no longer likely. Changes in the SSU are presumably neutral, therefore,

these changes would be due to random mutations. However, it is reasonable to assume that changes in the SSU rDNA are occurring in congruency with whole genome changes and not independent of evolutionary genome processes. Oxalosuccinic acid Evolution over geological time may have resulted in significantly different ciliate communities in the brines. Divergence of species occurring in isolation through adaptive shifts that occurs in common seed species populations has been demonstrated for a number of taxa, including several macro- and microinvertebrates using molecular as well as taxonomic studies [84–87]. Based on our data, it is not unreasonable to assume that protists are also subjected to such evolutionary processes. Our study strongly suggests that evolutionary time scales combined with physical and hydrochemical isolation can explain, in part, the observed evolutionary differences in the ciliate communities in the different DHABs studied here.

Precipitation was completed after 30 min at 90°C, and SPIONs were

Precipitation was completed after 30 min at 90°C, and SPIONs were collected by magnetic separation following three washes with deionized water. Fabrication of lipid-coated Fe3O4 nanoparticles A DPPC/DPPG (50:50, mol/mol) lipid coat was immobilized on the surface of SPIONs via high-affinity avidin/biotin

interactions as described previously by this laboratory [12]. For a standard fabrication batch, 1 mL of Fe3O4 nanoparticles suspended at 0.024 mg/mL in citrate buffer, pH 7.4, was incubated with 0.05 mg/mL of avidin at 4°C for 24 h. Excess avidin was removed by three consecutive wash cycles using the same citrate buffer. In a separate 1.5 mL microcentrifuge tube, 95 μL of an equimolar DPPC/DPPG mixture (NOF America, White Plains, NY, USA) prepared in CHCl3 was combined with 5 μL of 0.6 mM DSPE-PEG2000-biotin (Avanti Polar Lipids, Alabaster, AL, USA) solution prepared in the same organic CDK inhibitor solvent. CHCl3 was removed under vacuum forming a dry phospholipid film along the centrifuge tube wall. Affinity-stabilized immobilization of a phospholipid layer on avidin-coated SPIONs was induced at room temperature by a 15-min continuous exposure to ultrasonic waves (60 Hz) followed by an additional stabilization period of 30 min at 4°C. Phospholipid-modified Fe3O4

nanoparticles were washed three times with the buffer solution of interest before used for experiments. Physicochemical particle properties Particle size distribution and electrokinetic potential of uncoated and lipid-coated SPIONs were determined by dynamic selleck products laser light scattering (DLS) using the Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK) equipped with a 4-mW helium/neon laser (λ = 633 nm) and a thermoelectric temperature controller. Doxacurium chloride Particle suspensions prepared in different buffer solutions were preincubated at 25°C

for 5 min before each measurement. Particle size values reported in this study correspond to hydrodynamic diameters. Magnetically induced hyperthermia Thermal properties of lipid-coated and uncoated control SPIONs were assessed under various conditions following exposure to an alternating magnetic field using the commercial MFG-1000 (lmplementa Hebe, Lund, Sweden) and an experimental magnetic hyperthermia system (MHS) built in our laboratory. Figure 1 shows a schematic diagram of the laboratory-made MHS. It consists of a 10-turn copper coil wrapped around a cylindrical G-10 tube to generate the magnetic field, a connection to a recirculating waterbath that allows control of the environmental temperature inside the coil, and an optical sensor to monitor sample temperature. Styrofoam provides insulation between the coil and the sample. An OEM-6 radio frequency power amplifier operated at 13.56 MHz was used to generate the AC magnetic field. The magnetic field generated in the coil was determined using two turns of a 2-mm magnet wire.

tabida, we constructed

tabida, we constructed www.selleckchem.com/products/DAPT-GSI-IX.html a normalized library (N) based on both whole females (mix of complex tissues) and ovaries (organ of interest), in various physiological conditions (with or without symbionts/pathogens). To limit host genetic variability, only the Pi3 strain was used for the library preparation. The normalized library was constructed by Evrogen (Moscow, Russia) from an equimolar proportion

of total RNA prepared from aposymbiotic ovaries, symbiotic ovaries, and 3h-, 6h-, 12h-challenged symbiotic females. Total RNA samples were used for ds cDNA synthesis using the SMART approach [28]. SMART-prepared, amplified cDNA was then normalized using the DSN normalization method [29]. Normalization included cDNA denaturing/re-association, treatment by duplex-specific nuclease (DSN) [30] and amplification of normalized fraction by PCR. Normalized cDNA was purified using QIAquick PCR Purification Kit (Qiagen, Alameda, CA), digested with restriction enzyme Sfi1, purified (BD Chroma Spin – 1000 column), and ligated into pAL 17.3 vector (Evrogen) for Escherichia coli transformation. Preparation of EST libraries for in silico comparisons between symbiotic and aposymbiotic ovaries In order

to increase the number of transcripts from the ovaries and to determine the influence of symbiosis on host gene expression, we constructed EST libraries on aposymbiotic (OA1 and OA2, the quality of the OA2 library being slightly lower) and symbiotic (OS) ovaries (Pi strain). Total RNA was extracted from a large number of ovaries (nOA=196, nOS=120) as described in [31], and treated with DNAse (TurboDNase, Ambion, Applied Biosystems, Austin, TX), following PLX3397 chemical structure the Manufacturer’s instructions. Tissue libraries were prepared using Creator SMART cDNA Library Construction kit (Clontech/BD biosciences, PaloAlto, CA), following the Manufacturer’s instructions. cDNA was digested by Sfi1, purified (BD Chroma Spin – 400 column), and ligated into pDNRlib vector for E. coli transformation. Preparation of Suppression Subtractive Hybridizations (SSH) libraries for in vitro comparisons Because in silico comparisons of EST libraries learn more can be limited by the depth coverage, we also

used a complementary technique to compare gene expression by directly screening differentially-expressed transcripts through SSH. In order to better understand the influence of ovarian phenotype, we performed SSHs between aposymbiotic (A) and symbiotic (S) ovaries in two populations exhibiting extreme phenotypes (Pi3: no eggs in aposymbiotic ovaries, NA: few abnormal eggs in aposymbiotic ovaries). Total RNA was extracted from a large number of ovaries [nA=373 and nS=458 for SSHs-1 A-S (Pi strain, distal part of ovaries), nA=nS=200 for SSHs-2 A-S (NA strain, whole ovaries)] and treated with DNAse (TurboDNase, Ambion, Applied Biosystems, Austin, TX), following the Manufacturer’s instructions. Amplified ds cDNA was prepared using a SMART approach [28].

This in situ synthesis process of metallic nanoparticles can be a

This in situ synthesis process of metallic nanoparticles can be applied to several well-known deposition techniques such as sol-gel process [34], electrospinning [35], or layer-by-layer (LbL) assembly [36]. Among of all them, LbL assembly shows a higher versatility for tailoring nanoparticles due to the use of polyelectrolytes with specific functional groups [37]. Furthermore, a thermal post-treatment Selleckchem Idasanutlin of the films makes possible the fabrication

of chemically stable hydrogels [35] because a covalent cross-link via amide bonds between the polymeric chains of the polyelectrolytes has been induced [38–40] with a considerable improvement of their mechanical stability. In this work, two weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) as a cationic polyelectrolyte and PAA as an anionic polyelectrolyte, have been chosen to build the multilayer structure. The pH-dependent LDK378 cell line behavior of the PAA makes possible to control the proportion of carboxylate and carboxylic acid groups [41–44]. The carboxylate groups are responsible of the electrostatic attraction with the positive groups of the PAH, forming ion pairs to build sequentially adsorbed multilayers in the LbL assembly. In addition,

the carboxylic acid groups are known as nanoreactor host sites which are available for a subsequent metal ion Staurosporine exchange with the proton of the acid groups. More specifically, the carboxylic acid groups are responsible of binding silver cations via metal ion exchange (loading solution). Once silver ions have been immobilized in the films, a chemical reduction of the silver ions to silver nanoparticles (AgNPs) takes place

when the films are immersed in the reducing solution. Several approaches have been presented in the bibliography using different loading and reduction agents as well as weak or strong polyelectrolytes [45–49]. Nevertheless, weak polyelectrolyte LbL templates (such as PAH and PAA) offer the additional advantage of an adjustable pH-dependent degree of ionization, which is a key parameter when in situ synthesis process (ISS) approach is used. Alternatively, AgNPs-loaded LbL films can be built up using polyelectrolyte-capped metal nanoparticles. The use of PAA as a protective agent of the silver nanoparticles (PAA-AgNPs) plays a key role for a further incorporation into LbL films [30]. The carboxylate groups at a specific pH value are used to build the sequentially adsorbed multilayer structure with a cationic polyelectrolyte, preserving their aggregation of the AgNPs into the LbL films [50]. Henceforward, this approach of a successive incorporation of AgNPs of a specific morphology into LbL films will be referred as layer-by-layer embedding (LbL-E) deposition technique.

D KPT mice were randomized and received treatments (Vehicle, AOM1

D KPT mice were randomized and received treatments (Vehicle, AOM1, Carboplatin and combination) at 8 days post-implantation. Tumors volume were measured twice/week and study was terminated at 27 days after implantation. Lung metastasis is induced by OPN in KPT mice In addition to primary tumor growth, the sc-implanted tumors had the capacity to metastasize Wnt drug to the lung indicating that tumor pieces from the GEMMs have maintained their invasive capacity. We analyzed metastasis in the lungs and further classified tumor lesions as small, medium, and large according to the size of the lesions (Figure 5A). Pathology analysis indicated that while there was no significant

difference in the number of small or medium

tumors in the lung, AOM1 as single agent or in combination with Carboplatin significantly inhibited growth of large tumors (Figure 5B). In addition analysis of the frequency of lung metastases showed a significant decrease in the percentage of mice carrying large lung tumors following treatment with AOM1 as compared to the vehicle-treated animals, particularly in combination treatment group (AOM1 plus Carboplatin) where none of the mice carried large tumors as judged by the histological analysis (Figure 5C). These observations suggest a role for OPN as a mediator of metastasis in a preclinical model of NSCLC. Figure 5 AOM1 inhibits growth of large tumors in the lung in a NSCLC tumor. A Scid/beige mice were sc implanted with pieces of tumors isolated from lung lesions from KrasG12D-LSLp53fl/fl selleck screening library mice. Implanted mice were randomized at 8 days post-implantation and were treated with vehicle, AOM1, carboplatin and combination of both compounds. Tumor volume was measured using caliper twice per week. At terminal analysis whole lung from each mouse was fixed in formalin and was stained in H&E. Representative images from each treatment are shown. In pathology analysis lung lesions were classified into small (less than

10 cells) medium (10-200) and large (more than 200 cells) size and were quantified in each treatment. B Quantifications of lesions Acetophenone in each treatment. Bar graph represents mean number of lesions ± SEM. C Frequency of mice carrying each lesion in each treatment also indicated that AOM1 as single agent or in combination with Carboplatin significantly inhibits percentage of mice carrying large tumors in the lung. Discussion Among molecular mediators of tumor growth and progression, OPN represents a complex target/pathway particularly in drug development. OPN has been identified in several pathological tissues (inflammatory, obese, and cancerous) in the organism [1]. OPN expression is elevated during inflammation to recruit macrophages and other immune infiltrating cells. A recent report shows that OPN may play a significant role in obesity through regulation of insulin signaling in liver cells and inflammation [43].

The same structures also were present in rapidly frozen, freeze-s

The same structures also were present in rapidly frozen, freeze-substituted material that has been embedded in resin. The results presented in this preliminary account are derived from monospecies biofilms, grown in the laboratory under artificial conditions. Biofilms produced in situ, either in the environment or in medical specimens, usually consist of more than one species

or subspecies, sometimes making up highly complex microbial communities. The extracellular ultrastructures of such multispecies biofilms could differ from that of the monospecies model biofilms studied here by forming a more heterogeneous matrix, or by providing substrates for catabolic processes in other species. Therefore, it is possible that the observed high degree of matrix organization could be the result of growing pure cultures under constant conditions and may not be as pronounced in the environment. More research on multispecies Decitabine mouse biofilms observed in vitro as well as those taken directly Nutlin-3 nmr from natural environments is required to thoroughly address this important issue. The biofilms were characterized in terms of their overall chemical composition (Table 1) and were found to consist primarily (up to 49% wt) of proteins, reflecting the typical dry weight composition

of E. coli cells under balanced growth conditions [39]. Polysaccharides were found to make up a smaller fraction of the biofilm mass (ca. 15% wt), and were of the magnitude expected in a vegetative bacterial cell. These results are atypical for EPS produced by Pseudomonads, which generally have a higher sugar-protein ratio. Pseudomonas aeruginosa Sorafenib price is considered a model organism for biofilm research and consequently has been studied intensively within this context [40]. The EPS of P. aeruginosa SG81 consists primarily of uronic acids (alignate) and proteins, in roughly a 2:1 ratio (by

weight, sugar-protein) [41]. Marcotte et al. reported sugar-protein weight ratios of 0.79 for P. aeruginosa, where-as the intracellular sugar-protein weight ratios for two P. aeruginosa strains were in the 0.27–0.36 range [29]. It should be noted that the biofilms in these studies were processed by different methods to those described here. The comparison of sugar-protein ratios, however, still is relevant and underscores the difference in chemical composition of the biofilms produced by these related Pseudomonads. Alginates in biofilm EPS have been implicated in the development and maintenance of the mechanical stability of biofilms formed by P. aeruginosa both on living and abiotic surfaces [42]. The lack of observed O- or N-acetylation in the biofilm samples analyzed here also is noteworthy, as these groups are common components of biofilm EPS produced by Pseudomonas spp. [28]. Total nucleic acid levels in the biofilm (ca. 5% wt) were one order of magnitude higher than corresponding DNA measurements (ca. 0.5% wt).

(2011) [16]), IC urine has a significantly higher proportion of F

(2011) [16]), IC urine has a significantly higher proportion of Firmicutes (p ≤ 0.05, p value from Metastats for V1V2)

(65% vs 93%, respectively) and reduced proportions of the other 5 common phyla (Figure 1A). Interestingly, the phylum Nitrospirae was only detected in IC urine. Five additional phyla present in HF urine (Siddiqui et al. (2011) [16]) were not identified in IC urine at all (Figure 1A). The distribution of major phyla in IC urine was similar NSC 683864 for both the V1V2 and V6 sequence dataset, although Fusobacteria and Nitrospirae were only identified by the V6 sequence dataset. Sequence reads for all phyla but one (Nitrospirae 0.003% of the reads) were further classified to order level. 16 of the 22 orders identified in healthy urine (Siddiqui et al. (2011) [16]) were also detected in IC urine. A significant shift in the bacterial composition was observed as a result Ruxolitinib supplier of an increase of Lactobacillales (Figure 1B and C) (p ≤ 0.05, p value from Metastats for V1V2) in the IC urine microbial community relative to HF urine. 92% and 91% of the reads for V1V2 and V6 respectively, were assigned to this order. In HF urine only 53% of the reads for V1V2 and 55% for V6 were assigned to Lactobacillales. The abundance of other major orders seen in HF urine is reduced in IC samples (Figure 1B and Additional file 1: Table

S1). All sequence reads assigned to the order level

were additionally assigned to family level. Among the 26 families identified, only 21 were assigned to different genera. Four of those families that were not further assigned (Pasteurelacae, Neisseriacae, Methyliphilaceae, and Micrococcaceae) were also detected in the HF urine study. Saprospiraceae, on the other hand was only Rho found in IC urine. At the genus level, the pooled sequences were assigned to 31 different genera, with 23 and 25 different genera for V1V2 and V6 analysis, respectively. Lactobacillus was the most abundant genus in both datasets and comprised a total of 92% of the sequences. Gardnerella and Corynebacterium were the two other major genera identified with 2% sequence abundance each. Prevotella and Ureaplasma were each represented by 1% of the sequences assigned. The other 26 genera determined in IC urine constituted only 2% of the total IC urine bacterial community. In contrast to HF urine, there was a considerable reduction in total numbers of genera identified in IC urine (45 genera vs. 31 genera, respectively) (Additional file 1: Table S1). Additionally, the abundance of common genera was found to differ between IC patients and healthy females. The significant increase of Lactobacillus (p ≤ 0.05, p values from Metastats for both V1V2 and V6) in IC urine compared to HF urine again suggested a structural shift in the microbiota of IC patients.

Table 2 reports the results of soil samples, purposefully contami

Table 2 reports the results of soil samples, purposefully contaminated with anthrax, evaluated by the classic method at three dilution levels GPCR Compound Library cell assay and by the GABRI method. As shown, no anthrax spores were detected in these samples using the classic procedure, even when undiluted suspensions were examined; in contrast, all samples were positive to the GABRI method. With regard to contaminants, the GABRI method revealed a microbial contamination averaging nearly 1.1 colonies per plate, while by using the classic

method, the microbial contamination averaged 59.7 colonies per plate in the suspension, 22.2 in the 1:10 dilution and 3.1 in the 1:100 dilution (Table 2). Table 2 Purposefully anthrax spore-contaminated soil samples examined by the classic method at three dilution levels and by the GABRI method Soil sample Anthrax spores added to sample CFU of B. anthracis isolated by classic method CFU of contaminants isolated by classic method CFU of B. anthracis and contaminants isolated by GABRI method Total of 10 plates Total of 10 plates Total of 10 plates Undiluted 1:10 1:100

Undiluted 1:10 1:100 CFU of B. anthracis CFU of contaminants N.1 520 0 0 0 725 341 124 2 8 N.2 480 0 0 0 714 337 8 2 9 N.3 500 0 0 0 1000 289 54 2 3 N.4 570 0 0 0 225 45 1 6 4 N.5 430 0 0 0 334 29 1 4 15 N.6 500 0 0 0 584 292 2 3 27 Average 500 0 0 0 597 222.2 31.6 3.2 11.0 Table 1 reports the results of naturally contaminated soil samples from Bangladesh, evaluated by both methods. As shown, when these samples were tested

by C225 the classic method, spores of B. anthracis were detected Anti-infection Compound Library only in four undiluted samples, in three samples diluted 1:10 and in two samples diluted 1:100. In contrast, all samples resulted positive to GABRI method. This method revealed a microbial contamination averaging nearly 55 colonies per plate, while the classic method averaged 297 colonies per plate in the suspension, 56 in the 1:10 dilution and 7 in the 1:100 dilution (Table 1). Discussion The results confirmed that the GABRI method was more efficient than the classic method in detecting anthrax spores even in samples with low level of B. anthracis contamination. Interesting is the result concerning the reduction of the microbial contaminants: in the anthrax spore contaminated soil samples, the presence of contaminants was significantly reduced when GABRI method was used respect to the classic method (Tables 1 and 2). This result is significant considering that in the GABRI a suspension volume of 1 ml was tested while the classic method a volume of 0.1 ml was examined. The statistical comparison between the two methods was carried out using the method of Bland Altman, through which it was observed that the two methods are not statistically similar (Figure 1). The GABRI method produces a measure of the presence of contaminants significantly different from the classic method.

mansoni[23] This PCR detection protocol can also be easily adapt

mansoni[23]. This PCR detection protocol can also be easily adapted to identify intermediate host(s) and perform surveillance, which is important in developing effective strategies to control the transmission of eye worms in the field. Our phylogenetic analysis based on 18S rRNA sequences indicated that O. petrowi clustered closely with Streptopharagus and Spirocerca (Figure 3). It is known that

birds are a paratenic host for Spirocerca lupi infection in their life cycle between dogs and dung beetles [24]. Dung beetles are also the Z-VAD-FMK in vitro intermediate host for Streptopharagus[25]. These observations suggest that dung beetles might be worth examining as one of the potential intermediate hosts. Indeed, the detection of O. petrowi DNA in various insects including dung beetles is currently ongoing as part of a separate project in determining the intermediate host(s) and transmission route(s), and the data will be reported upon the completion of the survey. Conclusions We have performed a small-scale genome Ixazomib nmr sequence survey (GSS), which not only rapidly generated a large number of molecular sequence data

for the first time for O. petrowi, but also provided a snapshot of the genome for the eye worm in quail. The survey also identified a large number of microsatellite sequences that may be employed in further genotyping and population genetics studies. Our phylogenetic reconstructions based on 18S rRNA sequences indicated that Spiruroidea was paraphyletic, while O. petrowi, Streptopharagus and Spirocerca formed a sister clade to the filarial nematodes. The obtained ITS sequence data

also permitted us to design specific primers for molecular detection of O. petrowi in fecal samples, which may also be adapted to detect this nematode in insect intermediate hosts for surveillance and developing strategies to control the transmission of eye worms from intermediate hosts to quail. We also determined that ~28% – 33% of the birds were O. petrowi positive, suggesting that eye worm was a significant parasite in at least some quail ranches in Texas. Acknowledgements Major funding for this research provided by Rolling Plains Quail PLEK2 Research Foundation (http://​www.​quailresearch.​org) to GZ, AMF and DR. We thank Dr. Jason M. Fritzler at the Weber State University for his critical reading of the manuscript. Electronic supplementary material Additional file 1: Table S1: List of contigs with annotations and information on top blast hits. (XLSX 122 KB) Additional file 2: Table S2: Oxyspirura petrowi microsatellite sequences identified by the GSS (all perfect matches) using Phobos. (XLSX 84 KB) References 1. Pence DB: The genus Oxyspirura (nematoda: thelaziidae) from birds in Louisiana. Proc Helminth Soc Washington 1972,39(1):23–28.